INTRODUCTION AND OBJECTIVES

Elongated and quasi-stationary convective rainbands triggered by smal
of producing heavy precipitation are often observed over the Italian A
the final and most intense phase of the Vaia storm over the eastern Ita

October 2018. South-east/north-west oriented bands, driven by the strong Sirocco wind, caused
floods and landslides in several locations.

-scale orography and capable
ps. Such features occurred in
ian Alps, in the evening of 29

This work aims at studying the thermodynamic conditions favorable for their formation and the role
played by small-scale topographic details on their development. The analysis is performed through
semi-idealized numerical simulations with the WRF-ARW model. Simulations are initialized using
variations of the radio-sounding data measured at Udine-Rivolto at 18:00 UTC, 29 October; the small-
scale energy needed to develop convection is provided prescribing background thermal fluctuations
embedded in the low-level flow or random perturbations on the background orography.

Different sensitivity analyses have been performed. Simulations initialized with a simplified smooth
orography are used to demonstrate the influence of model resolution and atmospheric factors on

rainbands development. The influence of orographic details on their structure and formation, is
studied using different levels of topography idealization.

In this contribution, sensitivity to model resolution, atmospheric stability and small-scale orographic

triggers is shown. Some of the results found with an idealized orography are confirmed performing a
simulation with the real Eastern Alpine ridge.

METHODS: MODELING SET-UP AND UPSTREAM SOUNDING
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[ Model set-up: ]

> Three nested domains

» DO01: Ax=Ay =3 km, D02: Ax=Ay=1
km, DO3: Ax = Ay =500 m or Ax = Ay =
200 m

» DO1: At=9s, D02: At =3s, D03: At =
1.5s0r0.6s

» 65 stretched vertical levels

» 2., = 25 km, 5 km damping layer

» Open boundary condition S-N

» Periodic boundary condition W-E

» No Coriolis force

» Simulations starts 29 October 2018 at
18:00

» Random T perturbations in range *
0.1K for sensitivity to resolution and
atmospheric stability

» P, =1000 hPa

» Feedback switched off for sensitivity
on resolution
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[ Upstream Sounding: ]

» Sensitivity to resolution is based on
Udine sounding

» l|deal simplified southerly flow

» Three layer stability CTRL sounding
used for the other simulations (with
modifications for sensitivity to
stability)

» Udine sounding: LCL = 950.7 hPa, LFC
= 876.8 hPa, CAPE = 704.2 J/kg, CIN =
43.4 J/kg

» Strong low-level shear

RESULTS: SENSITIVITY TO MODEL RESOLUTION
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RESULTS: SENSITIVITY ON ATMOSPHERIC STABILITY

Sensitivity to atmospheric stability has been studied varying the dry Brunt Vaisala frequency N of
layers 1 or 3 of the CTRL sounding, keeping the RH constant. Less band-shaped convective

organization is observed as instability increases in the cap cloud, causing more cellular convection
because of stronger updrafts.
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RESULTS: SENSITIVITY ON SMALL SCALE TOPOGRAPHIC DETAILS

The effect of small scale topography is studied applying random perturbations to the background
orography, or defining individual bumps and holes before the main smoothed ridge. The CTRL
sounding has been used. Random perturbations make the rainbands stationary and enhance the
spatial difference in total precipitations, if their influence is strong enough. Acting as a trigger for
lee waves (Fig. b), they favor the development of convection in the cap cloud.
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» Fig. (b) shows contours
of w (m/s) along the
cross section shown in

. Fig.(a) 4

Simulations with individual bumps or series of bumps and «valleys» before the main ridge show that:
»their effect on rainbands development is strictly related to their position

»the generated lee wave pattern has to be in phase with the uplift generated by the main ridge to

favor rainbands development
- O

he wave generated by
the bumps are in phase
with the uplift generated
by the ridge and favor
the development of
three stronger
rainbands. Valleys create

\ashadow effect. /

RESULTS: SIMULATION WITH REAL OROGRAPHY
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A simulation initialized with the real orography and the CTRL sounding (keeping the directional shear

with altitud) shows that bands are well-captured by the model.

» Bands are characterized by strong stationarity, in agreement with idealized simulations

» Their position is strictly related to the underlying topography

» Subsidence induced by deeper valleys (as the Adige valley) creates shadow regions and
disorganization of convective rainbands

» The spacing is increased to 10 -15 km. A probable cause is the lower value of RH reached as quasi-
stationary condition in this simulation.
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{ WREF terrain for the pseudo-real simulation and hourly precipitation after 9 hours }
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