
In search of  ghost cold 
pools and moisture rings. SOLSTICIAL HADLEY CELL ASCENDING EDGE THEORY FROM SUPERCRITICALITY

Spencer Hill1, Simona Bordoni2,3 & Jonathan Mitchell4

1 Program in Atmospheric & Oceanic Sciences, Princeton University, 2 DICAM, University of Trento,
3 California Institute of Technology, 4 Department of Atmospheric & Oceanic Sciences, UCLA

simona.bordoni@unitn.it

The Hadley Cell

Figure 1: Streamfunction of meridional mass circulation in the
annual mean (top), DJF mean (middle), and JJA mean (bottom)
from ERA-Interim.

Why does the shared, ascending
edge of Earth’s Hadley cells sits at
~15o in the summer hemisphere?
Several theories exist of direct or
indirect relevance to this
fundamental property of the general
circulation of the atmosphere, but
each is limited in one or more
substantive ways. Here, we pursue a
predictive theory for the edge of the
ascending branch of the cross-
equatorial Hadley cell based on the
extent of supercritical radiative
forcing. A supercritical latitude is
one at which, supposing no large-
scale overturning circulation existed,
the resulting state of latitude-by-
latitude radiative–convective
equilibrium (RCE) would possess
impermissible distributions of
angular momentum and absolute
vorticity. A large-scale overturning
circulation must therefore span at
minimum all supercritical latitudes.

The RCE state

below its local planetary value. If sufficiently strong, these
easterlies can cause the RCE angular momentum field, denoted
Mrce, to be increasing poleward, thereby changing the sign of
the Mrce meridional gradient and thus of the RCE absolute
vorticity, denoted hrce (Plumb and Hou 1992). Symbolically,
this implies fhrce, 0 (Emanuel 1995), where f[ 2Vsinu is the
planetary vorticity (i.e., the Coriolis parameter) with plane-
tary rotation rate V. That cannot be a time-mean solution for
multiple reasons [see Adam and Paldor (2009) and Hill et al.
(2019) for details]: it implies local extrema in Mrce, which
cannot be sustained in the presence of nonzero viscosity; it is
the sufficient condition for symmetric instability; and, near
the tropopause where vertical velocity vanishes, a change in
sign would require the absolute vorticity to pass through a fixed
point (i.e., where ›thrce5 0) that occurs athrce5 0 in the vorticity
equation. A large-scale circulation must emerge spanning at
minimum all such latitudes, which are referred to as supercritical.
Equivalently, where hrce 5 0 in the summer hemisphere consti-
tutes the minimal extent of the large-scale circulation in that
hemisphere.4

c. Supercritical forcing in eddying atmospheres

Supercritical forcing extent has not figured centrally in
theories for Earth’s solsticial Hadley cell ascending edge for
reasons that seem plausible in passing but that falter under
scrutiny.

First is the notion that supercriticality is meaningful in axi-
symmetric atmospheres only and is in principle inapplicable to
macroturbulent atmospheres. One can see how this would
emerge. Supercriticality (though not referred to as such) was
popularized by Held andHou (1980) as an intermediate step in
developing their highly influential axisymmetric, angular-
momentum-conserving model for the annual-mean Hadley
cells. For solstice, the fhrce , 0 facet was presented by Plumb
and Hou (1992) also in a purely axisymmetric context [though
soon extended to moist, zonally varying contexts by Emanuel
(1995)]. Moreover, the marginally critical state of hrce 5 0
corresponds to uniform Mrce, which, with its homogeneous
angular momentum distribution, might sound like a de-
scription of the axisymmetric (and nearly inviscid) angular-
momentum-conserving model.

But the angular momentum that is spatially homogeneous in
the angular-momentum-conserving model is that of the dy-
namically equilibrated state, M, and crucially Mrce 6¼ M. By
definition, the latitude-by-latitude RCE state is one in which
there is no large-scale circulation, zonally symmetric or oth-
erwise. Irrespective of whether the Hadley cells in the dy-
namically equilibrated state end up perfectly homogenizing
angular momentum, or are totally controlled by eddies, or

(most likely) something in between, latitude-by-latitude RCE
cannot be sustained over any latitude that is supercritically
forced. Therefore, at least in the narrow sense regarding the
minimal extent of a large-scale circulation of some kind, super-
critical forcing extent is meaningful in all rotating atmospheres.

This leads to a second concern: whether in practice the su-
percritical forcing extent usefully predicts, much more specif-
ically, the location of the Hadley cell ascending edge. In
simulations for which supercritical extent has been explicitly
computed, the ascending edge latitude sits poleward of the
hrce 5 0 latitude (F17; Hill et al. 2019; S19).5 As such, to be a
useful predictor, the supercritical forcing extent must scale
proportionally with the actual ascending cell edge latitude. As
section 5 will demonstrate—albeit empirically—this does in
fact hold in a diverse range of idealized GCM simulations.

3. Latitude-by-latitude RCE under solsticial forcing

a. Numerical simulations

We use the climlab single-column model (Rose 2018) to
simulate solsticial latitude-by-latitudeRCE.Each single-column
simulation is forced with insolation corresponding to present-
day, boreal summer solstice at a specified latitude, with the
chosen latitudes in 18 increments spanning from equator to the
pole in the summer hemisphere and from the equator to 558 in
the winter hemisphere. Apart from using solsticial rather than
annual-mean insolation, the setup is identical to that ofHill et al.
(2020), to which readers are referred for more details.

Time-averaged fields from the single-column simulations
are concatenated together in latitude to yield latitude–

FIG. 2. Temperature as a function of latitude and pressure from
the solsticial RCE simulation, as indicated in the color bar. The
gray line at 200 hPa indicates the level at which the temperature is
used to compute the gradient-balanced wind.

4 A latitude is also supercritical if Mrce . Va2 or Mrce , 0 (Held
and Hou 1980). But in the summer hemisphere, at least for Earth,
the hrce 5 0 point sits poleward of these conditions, save perhaps
for just after spring equinox when the Mrce 5 Va2 point can be
farther (cf. Figs. 3 and 4 of Hill et al. 2019). Henceforth we take the
summer hemisphere supercritical forcing extent as identical to
where hrce 5 0.

5 Earth’s extratropics, which are nominally subcritical by this
definition throughout the annual cycle, obviously are not in a state
of latitude-by-latitude RCE. There, the hypothetical RCE state is
unstable in other ways, of most relevance baroclinically. Such
baroclinic instability—and with it an extratropical dynamical re-
gime—could in principle extend into the supercritically forced
region, pushing the solsticial Hadley cell ascending latitude equa-
torward thereof (much as it limits theHadley descending, poleward
edges; cf. Held 2000; Korty and Schneider 2008; Kang and
Lu 2012).
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We use the climlab single-column model (Rose 2018) to simulate solsticial latitude-by-latitude
RCE, forced with insolation corresponding to present-day, boreal summer solstice, with the
chosen latitudes in 1o increments spanning from the equator to the pole in the summer
hemisphere and from the equator to 55o in the winter hemisphere. Time-averaged fields from
the single-column simulations are concatenated together in latitude to yield latitude–pressure
distributions of each field. Figure 2 shows the resulting temperature field T. Once the
temperature distribution is known, we compute:

• The zonal wind u, assuming thermal wind balance;

• Angular momentum using:

• The absolute vorticity, defined as:

Figure 3 shows the meridional profile of absolute vorticity of the RCE state. It is negative up
to ~15oN, which defines the supercritical latitudinal range and constitutes the poleward extent
of the resulting Hadley cell.

pressure distributions of each field. Figure 2 shows the resulting
temperature field T. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu
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where T̂ is the log-pressure-weighted average temperature
from the surface pressure ps 5 1000hPa to the given pressure p,
andRd is the dry-air gas constant.We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:

h5
21

a2 cosu
›M

›u
5 f 1 z , (3)

where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 458S–458N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25K from the equator to the summer pole and 75K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 408N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ;58N and increases to a local maximum near
;158N, poleward ofwhich it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ;158N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LH88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written

û
rce

u
0

5 11
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h

3
[12 3(sinum 2 sinu)2] , (4)

FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative–convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sinum 2 sinu. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
458S to 458N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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pressure distributions of each field. Figure 2 shows the resulting
temperature field T. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu
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where T̂ is the log-pressure-weighted average temperature
from the surface pressure ps 5 1000hPa to the given pressure p,
andRd is the dry-air gas constant.We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:
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where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 458S–458N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25K from the equator to the summer pole and 75K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 408N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ;58N and increases to a local maximum near
;158N, poleward ofwhich it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ;158N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LH88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written
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FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative–convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sinum 2 sinu. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
458S to 458N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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Figure 2: Temperature as a function of latitude and pressure from the solsticial RCE simulation. The gray
line indicates the 200 hPa level at which the temperature is used to compute the thermal wind.

Analytical solution
We approximate the RCE temperature with the
following analytical profile (Lindzen and Hou,
1988)

and compute the absolute vorticity from the
zonal winds in thermal wind balance with this
thermal forcing.

pressure distributions of each field. Figure 2 shows the resulting
temperature field T. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu
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where T̂ is the log-pressure-weighted average temperature
from the surface pressure ps 5 1000hPa to the given pressure p,
andRd is the dry-air gas constant.We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:
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where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 458S–458N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25K from the equator to the summer pole and 75K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 408N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ;58N and increases to a local maximum near
;158N, poleward ofwhich it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ;158N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LH88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written
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FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative–convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sinum 2 sinu. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
458S to 458N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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pressure distributions of each field. Figure 2 shows the resulting
temperature field T. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu
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where T̂ is the log-pressure-weighted average temperature
from the surface pressure ps 5 1000hPa to the given pressure p,
andRd is the dry-air gas constant.We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:
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where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 458S–458N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25K from the equator to the summer pole and 75K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 408N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ;58N and increases to a local maximum near
;158N, poleward ofwhich it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ;158N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LH88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written
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FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative–convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sinum 2 sinu. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
458S to 458N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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pressure distributions of each field. Figure 2 shows the resulting
temperature field T. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu
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where T̂ is the log-pressure-weighted average temperature
from the surface pressure ps 5 1000hPa to the given pressure p,
andRd is the dry-air gas constant.We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:
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where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 458S–458N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25K from the equator to the summer pole and 75K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 408N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ;58N and increases to a local maximum near
;158N, poleward ofwhich it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ;158N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LH88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written
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FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative–convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sinum 2 sinu. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
458S to 458N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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It can be shown that in the small angle approximation, the absolute vorticity changes sign
at latitude

with thermal Rossby number

This latitude represents the extent of the supercritical forcing and hence the minimum
extent of the resulting Hadley cell.

u3
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Roth 5 0: (11)

This is only meaningful if Roth ! uc, since Roth ; uc would
lead to a self-contradictory balance between terms of order
Ro3

th with a term of order Roth (or equivalently u3
c with uc).

6

Thus, assuming 0 , Roth ! uc ! sinum, the approximate so-
lution to (11) is simply
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According to (12), the solsticial Hadley ascending edge lati-
tude varies with the thermal Rossby number to the one-
third power.

As shown in appendix B, a Ro1/3
th scaling for the supercritical

forcing extent also emerges for any ûrce } (sinum 2 sinu)n with
integer n $ 1. That more general solution is

uc 5

!
nRoth

4
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This includes the n5 1 case in which the forcing is simply linear
in sinu. This can be seen from the overlain dashed purple
curves in Fig. 3, which are the ûrce, urce, Mrce, and hrce fields
computed with n5 1, um 5 908N, and Dh 5 2/15, i.e., twice the
value used for the n 5 2 case, such that nRoth is the same be-
tween them. Though certainly less accurate than the n 5 2
approximation overall, the n5 1 case captures the numerically
simulated RCE behavior in the tropics suitably. We conclude
that, with respect to the supercritical forcing extent, the ex-
tratropical wiggles and meridional curvature in the tropics of
the solsticial insolation matter little compared to the overall
increase moving toward the summer pole.

Figure 4a shows the supercritical forcing extent, i.e., where
(9) vanishes, solved numerically, if um 5 908 as Roth is varied

over 0 , Roth , 1.5, and Fig. 4b shows the same but with
BuDh 5 0.1 as um is varied from equator to pole. Figure 4 also
shows numerical solutions for the small-angle approximation
(11) and the analytical expression (12). For the given um 5 908
(Fig. 4a), the true zero crossing and the approximation thereto
move poleward monotonically with Roth. The approxima-
tion (12) captures the exact expression reasonably well even
for Roth ; 1, though it is consistently equatorward of the
exact value by a modest degree. Similarly, for a reasonably
Earthlike BuDh ; 0.1, the zero crossing moves poleward
most rapidly as um moves off the equator by a few degrees
and increases more gradually poleward thereof (Fig. 4b). In
the small-angle approximation, for example, the maximum
value of 23.68 occurs for um 5 908, but it is displaced only 28
equatorward thereof for um moved all the way to 558N.
The approximate solution again is accurate though biased
slightly equatorward for large um.

Finally, as noted above the actual solsticial Hadley cell as-
cending edge, ua tends to be displaced poleward of uc by a
constant multiplicative factor. But we do not have a theory for
that factor, which furthermore will prove to vary across ide-
alized GCMs in the simulations in the next section. As such,
from (12) we arrive at a scaling (rather than precise prediction)
for ua:

u
a }Ro1/3

th . (14)

We deem noteworthy and worth future exploration that this
scaling is essentially the same as that derived by Caballero et al.
[2008, cf. their Eq. (56)] for the descending edge in the winter
hemisphere, despite seemingly unrelated sets of assumptions
between the two studies. Specifically, motivated by their nu-
merical, axisymmetric simulations, Caballero et al. (2008) as-
sume that the Hadley cell zonal wind field conserves angular
momentum from the equator to the winter hemisphere de-
scending edge and that the descending edge latitude is pro-
portional to the ascending edge latitude ua; they then use
equal-area arguments to find a one-third power-law scaling
with the thermal Rossby number of the descending edge lati-
tude (and implicitly of ua). We make no assumptions about the

FIG. 4. (a),(b) Supercritical forcing extent under the forcing given by (4) as a function of different parameters,
with the full numerical solution, the small-angle numerical solution, and the analytical solution given by (12) as
indicated in the legend in (b). In (a) um 5 908 and solutions are shown as a function of Roth. In (b) BuDh 5 0.1 and
solutions are shown as a function of um.

6 A third mathematically possible case, 0, uc ! Roth ! sinum,
yields a physically nonsensical result.
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where u is potential temperature, the hat denotes a depth av-
erage, u0 is the Boussinesq reference potential temperature, û
maximizes at the latitude um, and Dh is a parameter controlling
(in conjunction with um) the fractional variations in ûrce with
latitude. The ‘‘rce’’ subscript emphasizes that we are treating
(4) as an approximation to the hypothetical latitude-by-
latitude RCE state that would occur absent a large-scale
circulation.

The Boussinesq expression for gradient-balanced zonal
wind at heightH is nearly identical to (1), with Rd ln(p/ps)›uT̂
replaced by (gH/u0)›uû:

u5Va cosu

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
1

cosu sinu
gH

V2a2u0

›û

›u

s

2 1

#

, (5)

where g is gravity and the surface zonal wind has been assumed
negligible due to surface friction. We use (4) as û in this ex-
pression to find urce;Mrce and hrce then follow using (2) and (3)
(the corresponding analytical expressions are shown in the next
section).

With g, V, and a set to appropriate Earth values, there are
still four free parameters between (4) and (5), namely, H, u0,
um, andDh—enough to potentially overtune to the numerically
simulated RCE fields of interest. Appendix A details our
procedure for choosing these values; in short, we choose con-
ventional values of H 5 10 km and u0 5 300K and then
perform a two-dimensional parameter sweep over Dh and um

values to find best fits to the simulated RCE temperature field
over 458S–458N (rather than directly for the hrce 5 0 point of
ultimate interest). Fortunately, providedum * 30+, the product
Dh sinum—which will figure centrally in our scaling below—is
nearly constant, provided that for each um one sets Dh to its
best-fit value for that um.

The resulting ûrce, urce, Mrce, and hrce fields with um 5 908N
and Dh5 1/15 are overlain in Fig. 3 as dashed orange curves. In
short, the LH88 forcing approximation captures the numeri-
cally simulated RCE state well throughout most of the domain
of relevance to the Hadley cells. In more detail, the nu-
merically simulated depth-averaged temperature field has
greater meridional curvature than the LH88 forcing ap-
proximation in the extratropics, but at lower latitudes of
more relevance to the Hadley cells the two are nearly co-
incident. The same largely holds for the zonal wind, though
it begins to deviate substantially (*20m s21) from the LH88
forcing approximation by the southern subtropics and de-
viates further poleward thereof. The effect of this is weaker,
however, on the angular momentum and absolute vorticity
fields. In the summer hemisphere the absolute vorticity field
is very accurately captured by the LH88 forcing approxi-
mation deep into the extratropics—including the zero
crossing near ;158N that constitutes the poleward edge of
the supercritical forcing extent.

4. Analytical expression for solsticial supercritical
forcing extent

Inserting (4) into (5) yields the gradient-balanced zonal wind
under LH88 forcing,

urce 5Va cosu

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2Roth

"
1

sinum

2
1

sinu

#s

2 1

#

, (6)

where

Roth [
gH

V2a2
Dh sinum (7)

is the thermalRossby number. EquivalentlyRoth5BuDh sinum,
where Bu [ gH/(Va)2 is the planetary Burger number. Our in-
clusion of sinum in the thermal Rossby number is nonstandard
andmakes (7) relevant to solsticial seasons only (since sinum5 0
for the equinoctial seasons and the annual mean). It is motivated
by appendix A, which shows that different fits of the LH88
forcing to the solsticial RCE state largely collapse onto a single
value of Dh sinum (for um values outside the tropics, as is
appropriate).

Using (6) in (2) then yields the corresponding absolute an-
gular momentum field,

M
rce

5Va2 cos2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2Ro
th
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1

sinum

2
1

sinu

#s

, (8)

and similarly using (6) in (3) yields the corresponding absolute
vorticity field:

hrce 5 2V sinu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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sinum

2
1

sinu

#

3

775 . (9)

Equation (9) comprises three terms multiplying one another.
The first is simply the local planetary vorticity f, which is ir-
relevant to the zero crossing within the summer hemi-
sphere. The second, the square root term, amounts by (8)
to Mrce/(Va2 cos2u). Its zero crossing corresponds to the
latitude very near the equator where Mrce 5 0. Here urce is
strongly negative, and it becomes less so moving toward um

such thatMrce increases, and thus fhrce , 0, over some span
poleward of this point. Therefore, the actual hrce 5 0 point
in the summer hemisphere always sits poleward of the
Mrce 5 0 point (see Fig. 3a of Hill et al. 2019) and depends
on the third term in (9), i.e., everything within the large
square brackets.

Without approximation, the third term vanishes at the lati-
tude uc satisfying

"
11 2

Roth

sinum

#
sin3uc 2

3

2
Roth sin

2uc 2
1

2
Roth 5 0: (10)

An exact solution to this third-order polynomial in sinuc can be
found using the cubic formula, but its form (not shown) is too
complicated to draw physical insights from. We therefore
pursue an approximate solution as follows. If we assume 0 ,
Roth! sinum# 1 and 0,uc! sinum# 1, thenuc’ sinuc and
to leading order (10) becomes
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Figure 3: Upper-tropospheric absolute vorticity of
the RCE state.

u3
c 2

3

2
Rothu

2
c 2

1

2
Roth 5 0: (11)

This is only meaningful if Roth ! uc, since Roth ; uc would
lead to a self-contradictory balance between terms of order
Ro3

th with a term of order Roth (or equivalently u3
c with uc).

6

Thus, assuming 0 , Roth ! uc ! sinum, the approximate so-
lution to (11) is simply

uc 5

!
Ro

th

2

"1/3

. (12)

According to (12), the solsticial Hadley ascending edge lati-
tude varies with the thermal Rossby number to the one-
third power.

As shown in appendix B, a Ro1/3
th scaling for the supercritical

forcing extent also emerges for any ûrce } (sinum 2 sinu)n with
integer n $ 1. That more general solution is

uc 5

!
nRoth

4

"1/3

. (13)

This includes the n5 1 case in which the forcing is simply linear
in sinu. This can be seen from the overlain dashed purple
curves in Fig. 3, which are the ûrce, urce, Mrce, and hrce fields
computed with n5 1, um 5 908N, and Dh 5 2/15, i.e., twice the
value used for the n 5 2 case, such that nRoth is the same be-
tween them. Though certainly less accurate than the n 5 2
approximation overall, the n5 1 case captures the numerically
simulated RCE behavior in the tropics suitably. We conclude
that, with respect to the supercritical forcing extent, the ex-
tratropical wiggles and meridional curvature in the tropics of
the solsticial insolation matter little compared to the overall
increase moving toward the summer pole.

Figure 4a shows the supercritical forcing extent, i.e., where
(9) vanishes, solved numerically, if um 5 908 as Roth is varied

over 0 , Roth , 1.5, and Fig. 4b shows the same but with
BuDh 5 0.1 as um is varied from equator to pole. Figure 4 also
shows numerical solutions for the small-angle approximation
(11) and the analytical expression (12). For the given um 5 908
(Fig. 4a), the true zero crossing and the approximation thereto
move poleward monotonically with Roth. The approxima-
tion (12) captures the exact expression reasonably well even
for Roth ; 1, though it is consistently equatorward of the
exact value by a modest degree. Similarly, for a reasonably
Earthlike BuDh ; 0.1, the zero crossing moves poleward
most rapidly as um moves off the equator by a few degrees
and increases more gradually poleward thereof (Fig. 4b). In
the small-angle approximation, for example, the maximum
value of 23.68 occurs for um 5 908, but it is displaced only 28
equatorward thereof for um moved all the way to 558N.
The approximate solution again is accurate though biased
slightly equatorward for large um.

Finally, as noted above the actual solsticial Hadley cell as-
cending edge, ua tends to be displaced poleward of uc by a
constant multiplicative factor. But we do not have a theory for
that factor, which furthermore will prove to vary across ide-
alized GCMs in the simulations in the next section. As such,
from (12) we arrive at a scaling (rather than precise prediction)
for ua:

u
a }Ro1/3

th . (14)

We deem noteworthy and worth future exploration that this
scaling is essentially the same as that derived by Caballero et al.
[2008, cf. their Eq. (56)] for the descending edge in the winter
hemisphere, despite seemingly unrelated sets of assumptions
between the two studies. Specifically, motivated by their nu-
merical, axisymmetric simulations, Caballero et al. (2008) as-
sume that the Hadley cell zonal wind field conserves angular
momentum from the equator to the winter hemisphere de-
scending edge and that the descending edge latitude is pro-
portional to the ascending edge latitude ua; they then use
equal-area arguments to find a one-third power-law scaling
with the thermal Rossby number of the descending edge lati-
tude (and implicitly of ua). We make no assumptions about the

FIG. 4. (a),(b) Supercritical forcing extent under the forcing given by (4) as a function of different parameters,
with the full numerical solution, the small-angle numerical solution, and the analytical solution given by (12) as
indicated in the legend in (b). In (a) um 5 908 and solutions are shown as a function of Roth. In (b) BuDh 5 0.1 and
solutions are shown as a function of um.

6 A third mathematically possible case, 0, uc ! Roth ! sinum,
yields a physically nonsensical result.
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Figure 4: Supercritical forcing extent as a function of thermal Rossby number and latitude of maximal forcing. 

Idealized GCM simulations
1.7, and 2.1, respectively (with dimensions radians per Ro1/3

th ).
The corresponding y intercepts (in degrees latitude rather than
radians) are approximately 4, 22, and 211, respectively. Our
scaling (14) is agnostic to the slope but would predict a y in-
tercept of zero. The proportionality constants span from nearly
the lower bound of unity (F17 cases) to a little more than twice
that (LH88-forced cases). By eye from Fig. 6 and given the
limited number of simulations and ambiguities in the estimate
of H, it is not clear how seriously the differences in the y in-
tercepts from zero should be taken.

Unfilled squares in Fig. 6 show ua in the three F17 perpetual
solstice cases. The ascending edge at 1/32 3 VE is nearly
identical for either insolation treatment, but in the 1 3 and
1/8 3 VE time-invariant forced cases ua is a few degrees
poleward from that of corresponding seasonally varying case.
This difference is not large, and the perpetual solstice F17 ua

values still sit equatorward of the corresponding S19 ones. We
lack an explanation for this difference between the perpetual
solstice simulations of F17 and S19, which is somewhat sur-
prising given seemingly modest differences in model formula-
tion. The slope and y intercept of the linear fit for the F17 13
and 1/83VE time-invariant forced cases (1.1 radians per Ro1/3

th

and 48, respectively) are also nearly identical to the annual-
cycle counterparts.

We have also computed best fit power-law exponents by a
standard least squares fit to each simulation set in (logRoth,
logua) space, again restricting to Roth , 1. For the F17, S19,
and Dh 5 1/15 LH88-forced sets, the best fit V exponents are
0.28, 0.34, and 0.41, respectively—all reasonably close to the
1/3 power predicted by (14), and nearly identical to it, at 0.34, in

their average. The exponent inferred for the 13 and 1/83VE

F17 perpetual-solstice simulations is 0.30, slightly closer to the
1/3 value than the 0.28 value from the F17 seasonal cycle
simulations. Again given the uncertainties, this small differ-
ence may or may not be physically meaningful.

FIG. 5. Mass overturning streamfunction normalized by its maximum value in each of the LH88-forced simu-
lations. Each panel corresponds to the simulation as labeled in the panel’s top-left corner, where VE is Earth’s
rotation rate. The blue dot indicates the solsticial cell maximum in the free troposphere, and the adjacent number
indicates the mass overturning strength (109 kg s21) at that point. The vertical solid orange line in each panel is
the simulated ua computed using (C1). The vertical dashed red line is the approximation thereto from a linear
best fit in Ro1/3

th across the three simulations with Dh 5 1/15.

FIG. 6. Cross-equatorial Hadley cell edge in the summer hemi-
sphere in idealized aquaplanet simulations of F17 and S19 and in
the idealized dry simulations of the present study as a function of
the thermal Rossby number to the one-third power, each signified
by different symbols as indicated in the legend. The solid lines show
the linear best fit to ua as a function of Ro1/3

th for the given simu-
lation set, restricting to Roth , 1, with red, blue, and yellow for
the S19, F17, and the Dh 5 1/15 dry simulations, respectively.
The dotted gray curve is the numerical solution to (10).

2006 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

� �#��"�"��&�#��&����$� !�"&������ &������������������ � &�'����#"���"���"���'��%���������	���������
���������

We examine the ascending edge latitude in simulations performed in two variants of an
idealized, moist GCM and an idealized dry GCM, across each of which planetary rotation rate
is varied. Under solsticial conditions, in each model the cross-equatorial Hadley cell expands
as the rotation rate decreases, and for diagnosed values of Roth up to order unity, this
expansion follows the Roth

1/3 scaling predicted by our approximate solution. Simulations with
very slow rotation rates and thus large Roth values deviate from the scaling, but in a way that
qualitatively resembles the more general solution (solved numerically). While our theory is
accurate only somewhat qualitatively, relies on some empiricism and provides a lower bound
rather than a precise prediction, it is an important step forward in developing a theory for a
fundamental aspect of the Hadley cell, such as the position of its ascending branch.

Hill, S. A., S. Bordoni and J. L. Mitchell, 2021: Solsticial Hadley cell ascending edge theory 
from supercriticality, J. Atmos. Sci., J. Atmos. Sci., 78, 1999-201

Figure 5: Cross-equatorial Hadley cell edge in the summer hemisphere in idealized moist and dry GCM simulations.


